ELLIPTIC KRV

Emma Qin

Mentor: Florian Naef

PRIMES Conference

May 19th, 2018

THE ASSOCIATIVE ALGEBRA

$$
x-y-y-x-x-x-y
$$

corresponds to

$$
x y y x x x y \quad(\neq x x x x y y y)
$$

THE ROOTED LIE TREE

corresponds to $\quad[[y, x], y]$

$$
\neq[y,[x, y]]
$$

THE LIE TREE, or F(L)

corresponds to

$$
u(x)=2[x,[y, x]]
$$

a derivation:

$$
u(y)=-2[[y, x], y]
$$

PROPERTIES OF THE LIE TREE

The Lie Brackets [\cdot, \cdot] gives a bilinear
 operation that satisfies:

1. (Antisymmetry)

$$
[x, y]=-[y, x]
$$

2. (Jacobi Identity)

$$
[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0
$$

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

PROPERTIES OF THE LIE TREE

The Lie brackets [\cdot, \cdot] gives a bilinear operation that satisfies:

1. (Antisymmetry)

$$
[x, y]=-[y, x]
$$

2. (Jacobi Identity)

$$
[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0
$$

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

DEF: krv

$$
\mathfrak{k r v}=\mathfrak{k r v}^{(1,1)}=\left\{u \in \operatorname{tder}(1,1)=\operatorname{Der}^{+}(L(x, y)) \mid u([x, y])=0, \operatorname{div}(u)=0\right\}
$$

We'll understand the definition in terms of graphs.

GRAPHICAL

REPRESENTATIONS

$$
x-y-y-x-x
$$

$$
\mathfrak{k r v}=\{\operatorname{der} u \mid u([x, y])=0, \operatorname{div}(u)=0\}
$$

Graphical Interpretation of $u([x, y])=0$

corresponds to

$$
u(x)=2[x,[y, x]]
$$

a derivation:

$$
u(y)=-2[[y, x], y]
$$

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

THE TRACE

Recall that $x-y-y-x-x$
is a term in the Associative Algebra

$$
\operatorname{tr}(x-y-y-x-x)=
$$

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

$$
\mathfrak{k r v}=\{\operatorname{der} u \mid u([x, y])=0, \operatorname{div}(u)=0\}
$$

Graphical Interpretation of div

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

$$
\mathfrak{k r v}=\{\operatorname{der} u \mid u([x, y])=0, \operatorname{div}(u)=0\}
$$

Graphical Interpretation of div

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

$$
\mathfrak{k r v}=\{\operatorname{der} u \mid u([x, y])=0, \operatorname{div}(u)=0\}
$$

Graphical Interpretation of div

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

CURRENT PROGRESS

Def: the birds-on-a-wire graph

Claim:
Every lie tree can be rewritten as birds-on-a-wire graph

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

PROGRESS AND GOALS

BASIS FOR $F(L) \leq 7$

$$
\begin{array}{lll}
x-x & x-y & y-y
\end{array} \quad x \xrightarrow{y} y
$$

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

MORE SMALL ELEMENTS

- Elements in krv with $2 x$'s

, Elements in krv with $3 x$'s (?)

GRAPHICAL
REPRESENTATIONS

$$
x-y-y-x-x
$$

GOALS

- Study the elements of évo with small total number of x and y 's.
, Possibly using a computer
- Study the elements of $\mathfrak{E t v}$ with small number of x 's.

Currently, we are working on elements with $3 x$'s.

I would like to thank:

- Dr. Florian Naef for proposing this project and for working with me every week,
- Dr. Tanya Khovanova for helping me prepare for the presentation and offering advice on the research report,
- MIT PRIMES-USA for offering this wonderful opportunity,
> and my parents for supporting me throughout the process.

